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Abstract In a majority of cases of long-time numerical integration for initial-value problems, round-
off error has received little attention. Using twenty-nine numerical methods, the influence of round-off
error on numerical solutions is generally studied through a large number of numerical experiments.
Here we find that there exists a strong dependence on machine precision (which is a new kind of de-
pendence different from the sensitive dependence on initial conditions), maximally effective computa-
tion time ( MECT) and optimal stepsize (OS) in solving nonlinear ordinary differential equations
(ODESs) in finite machine precision. And an optimal searching method for evaluating MECT and OS
under finite machine precision is presented. The relationships between MECT, OS, the order of nu-
merical method and machine precision are found. Numerical results show that round-off error plays a
significant role in the above phenomena. Moreover, we find two universal relations which are indepen-
dent of the types of ODEs, initial values and numerical schemes. Based on the results of numerical
experiments, we present a computational uncertainty principle, which is a great challenge to the relia-
bility of long-time numerical integration for nonlinear ODEs.

Keywords: ordinary differential equations ( ODEs), computational uncertainty principle, round-off error,
discretization error, strong dependence on machine precision, maximally effective computation time (MECT),
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Since most ODEs cannot be analytically solved, it is necessary to get their approximate solu-
tions by numerical methods'' ™!, When solving an initial value problem by any discrete variable
method, there are two basic sources of error: discretization error, which is caused by discretizing

[1,2]

differential equations , and round-off error, which is due to the finiteness of machine preci-

sion! 45

. For a given initial value problem, all standard discrete variable methods are conver-
gent if the calculations are carried out without round-off error. Therefore, little attention is paid to
round-off error in practice. Nevertheless, this does not mean that the influence of round-off error
is unimportant in most cases. In fact, the properties of exact solution may be radically changed in
long-time numerical integration for nonlinear ODEs because of the inevitability of round-off error.
Henricil " investigated round-off error on a fixed-point machine using probability theory and illus-
trated his theory with some linear equations, but the influence of round-off error on long-time nu-

merical integration was unnoticed. However, the floating-point arithmetic is prevalent on modern



450 SCIENCE IN CHINA (Series E) Vol. 43

electronic digital computers, and ODEs are generally nonlinear. We therefore investigated the im-
portant effect of round-off error on long-time numerical integration for nonlinear ODEs on floating-
point machine using both numerical experiments and theoretical analysis. We find that there exist
very serious problems caused by the finiteness of machine precision in numerical calculations,
and after the numerical integration of finite steps, numerical solution obtained by any stepsize is
unrelated to exact solution. As a result we present a computational uncertainty principle in non-
linear ODEs. This paper is divided into two parts: numerical results and theoretical analysis. The
aims of part I is to show some new important phenomena and the main results found in numerical
experiments and in providing importantly experimental evidence for the theoretical analysis in part
IT. And part IT gives the theoretical interpretation for the numerical results in part I.

1 Numerical model and numerical methods

The model discussed here is the Lorenz equationsm R

X = - ox + oy, (1)
y = rx -y - az, (2)
z = xy - bz, (3)

where 0 =10, b=8/3, 0< r < + ® . The initial problem of Lorenz equations has a unique so-
lution. Here the equations are chosen because of their fine representativeness. When 1 < r <

24 .74, there are two stable fixed points C (Vo(r-1), vb(r=-1), r - 1),
C'(-vb(r-1), =/ b(r-1), r—1) and an unstable fixed point O = (0,0,0) in Lorenz

equations. When r >24.74, C and C’' become unstable, and in this case, there are chaos and
[6—8]

a strange attractor

(14,91 \1sed here are as follows : (i)

Four classes of twenty-nine standard numerical methods
Explicit one-step methods: Euler’s method, Runge-Kutta (RK) methods of orders from 2 to 6,
Taylor series methods of orders from 2 to 10; (ii) explicit multistep methods: explicit Adams
methods of orders from 2 to 6; (iii) implicit methods: implicit Euler’s method, implicit Adams
methods of orders from 2 to 6; (iv) modified predictor corrector (PMECME) methods: trape-
zoidal PMECME method of order 2, Adams PMECME method and Hamming PMECME method of
order 4. All computations have been performed on an SGI ORIGIN 2000 computer (its single and

double precisions are 7 and 16 significant digits, respectively) .

2 The case without chaos

First we study the case of 1 < r <24.06, in which there is no chaos in the Lorenz equa-

tions! 68!

. Nevertheless, a strange phenomenon results from numerical experiments. Take the
classical 4-th order RK method as an instance, we use two stepsizes with very slight difference to
compute the same initial value (5,5,10), but we get two essentially different final states (fig.
1(a)—C(ec)), showing that there is a contradiction between the non-uniqueness of numerical re-
sults and the uniquencess of theoretical solution. More importantly, it is a general phenomenon
for stepsize. As shown in figs. 2 and 3, the final states of the numerical solutions for this initial
value, whether computed in single precision or in double precision, are very sensitive to step-
sizes. That is, different stepsizes with slight difference may probably lead to significantly different
final states of numerical solution. Obviously, the set of stepsize can be divided into two classes:

one (A) corresponds to the final state C and the other (B) to the final state C’ (figs. 2 and
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Fig. 1. Numerical solutions of the Lorenz equations computed by the 4-th RK method for r = 22
and the initial value (5,5,10). (a) The solutions of x-component obtained by two stepsizes with
very slight difference in single precision; (b) the projection on the x-y-plane, the stepsize h =
0.01, and the open symbol is the initial point; (c) as in (b), but for the stepsize h = 0.0099999.

lof @
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Stepsize A

Fig. 2. Final value (FV) of x-component of the lorenz equations obtained by the 4-
th RK method versus stepsize h in single precision. The stepsize k is (a) from 107° to
107", (b) from 3.981070 x 10™* to 5.956621 x 10™%, () from 4.751533 x 107 to
4.810801 x 1072, respectively. FV is the value of final state which the solution ap-
proaches and remains fixed there as time increases. The used numerical method, initial

value and r used here as in fig. 1.
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3). That is to say, if a stepsize belongs to A (or B), then the final state of the numerical solu-
tion obtained in this stepsize is C (or C’). To our surprise, the two classes of set display the
property of the Contor set[m](fig. 2(b) and (c), and fig. 3(b) and (c)), clearly showing that
the numerical solutions for different stepsizes exhibit random property against stepsize. The per-
centage of the number of stepsizes which belong to A will approach to 50% , as the total number
of stepsizes used increases (fig. 4) . The above phenomenon is unexpected and holds for the oth-
er twenty-eight numerical methods' (figures omitted) . Therefore, not only can the numerical
U1 but more importantly, we are unable to know which
solution to stepsize is true. This indicates that the final state of initial value such as (5,5,10)

methods bring about spurious solutions

cannot be calculated accurately with these numerical methods under the given machine precision.
The initial value of this kind is thus called ill-behaved initial value (IBIV). The point set com-
posed of IBIVs is called the IBIV point set. In contrast, there are well-behaved initial value
(WBIV) and the WBIV point set. As shown in fig. 5, there are two types of WBIV .

T R
4.80X 10 4.82X10™ 484X 107 4.86X107°
Stepsize h

Fig. 3. Asin fig. 2, but for double precision, and the stepsize h is (a) as in fig.
2(a), (b) from 4.4466834 x 10 to 6.309573 x 10™°, (c) from 4.798529 x 10~°
to 4.863025 x 10°¢, respectively .

To interpret the above phenomenon, we have carried out two groups of numerical experi-
ments on another initial vlaue (3,4,10). As shown in fig. 6, for the 4-th RK method, this ini-
tial value is ill-behaved in single precision, but it is well-behaved in double precision. The con-
clusion holds for the other methods”(ﬁgures omitted) . This suggests that round-off error due to
the finiteness of machine precision plays a decisive role in the above phenomenon. Moreover, it
shows that the quality of an initial value depends on machine precision. An initial value is an
IBIV in lower machine precision, but it may be a WBIV in higher machine precision. This re-
veals that the numerical results have a strong dependence on machine precision. And this kind of
dependence is quite distinct from sensitive dependence on initial conditions for two reasons.

1) Refer to Li Jianping, Computational uncertainty principle in nonlinear ordinary differential equations and two universal rela-
tions, Institute of Atmospheric Sciences, Chinese Academy Sciences: Postdoctor Research Summing-up Report, 1999, 174.
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Fig. 5. Two types of WBIV. (a) The computed FV

of x-component of the Lorenz equations for the initial
value (0,1,0) versus stepsize h. The computed FVs
are basically equal to the same constant with stepsizes
(between 10 % and 0.1); (b) as in (a), but for the
initial value (5,1,19.5). The computed FVs are sen-
sitive to the bigger and smaller stepsizes, but are un-
changed to the moderate stepsizes. The numerical
method, equations and r used here are the same as in

fig. 1, and using single precision.

1

In the first place, there is no chaos in the case discussed here. The other, and more important,
sensitive dependence on initial conditions is essentially independent of machine precision. There-
fore, the strong dependence on machine precision is a new phenomenon to which full attention-
should be paid in numerical computation and simulation.

Generally, the solution of a WBIV can be computed accurately by a numerical method.
However, as is clear in fig. 7, the so-called accuracy here is only in the sense of acceptable lev-
el. In addition, fig. 7 suggests that the absolute error does not decrease as the stepsize decreases,
but increases as the stepsize decreases while the stepsize is less than a critical stepsize. This

1
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Fig. 6. FV of x-component of the initial value (3, Fig. 7. Absolute error E of correctly computed FV of

1,10) versus stepsize h. (a) Single precision. The
computed FVs are sensitive to stepsizes, showing an
IBIV in single precision; (b) double precision. The
calculated FVs are sensitive to the bigger and smaller
stepsizes, but are nearly equal to the same constant for
the moderate stepsizes, showing a WBIV in double
precision. Here the used numerical method, equations

and r are as in fig. 1.

x-component for two WBIVs in fig. 5. (a) and (b)
correspond to fig. 5(a) and (b), respectively.
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critical stepsize corresponds to the minimum absolute error and will be called the optimal stepsize
as will be pointed out below (and in part II of this paper——theoretical analysis) .

Whether the Lebesgue measure of IBIV point set for a numerical method is zero under a giv-
en machine precision is an important question. If it is, it is a zero probability event that IBIV is
met in practical calculations, and the numerical method is therefore called successful. Otherwise,
the method is not absolutely successful. Based on hosts of numerical experiments for 580 810 ini-
tial values with the 4-th order RK method (table 1), there are many IBIVs in the Lorenz equa-
tions in the case of no chaos. They account for a majority when r =23, and will still markedly
grow in number as r increases. To our surprise, the so-called IBIVs are not in the place where
two basins of attraction of the two stationary attractors C and C’ meet (Plate [ -1). These re-
sults show that the 4-th order RK method is not absolutely successful under these conditions. Ad-
ditionally, the number of IBIVs in double precision is less than that in single precision, which
suggests that the IBIVs would decrease in number if the machine precision increases. This again
verifies the importance of round-off error in the numerical calculations. These conclusions are also
suitable for the other twenty-eight numerical methods.

Table 1  Percentages of WBIVs and IBIVs obtained by the 4-th order RK method for the Lorenz equations in some sections

Px:lO Pz:l—l Py:l Py:l()

r=22, Py 31.02 (37.33) 33.31 31.25 29.43
P2 31.02 (37.33) 33.31 30.76 28.49

P3 37.97 (25.33) 33.38 37.98 42.08

r=23, P 21.70 (23.78) 23.80 20.64 19.90
I 21.70 (23.78) 23.80 20.25 17.90

Ps 56.59 (52.64) 52.39 59.10 62.20

P, plane. The percentages in parentheses are obtained in double precision, the rest in single precision. p, and p, represent the
percentages of WBIVs whose final states are C and C’, respectively. p; represents the percentage of IBIVs. The section in the plane
zis -60<x<60 and - 60< y <60, and in the plane y is - 60< x <60 and - 60< z<60. Here every section is divided into
240 x 240 meshes and the initial points are on the mesh points (amount to 241 x 241 = 58081) .

3 The case with chaos

Now we discuss the case of r >24.74, in which the Lorenz equations have chaos!®¥!, a

strange attractor and no stable steady state. To display the phenomena from the numerical calcu-
lations, we have performed a lot of numerical experiments and have obtained many stepsize-time
plots of numerical solution for different initial values. This kind of plot can clearly display the
evoluion behavior of numerical solutions obtained by using different stepsizes for the same initial
value and the difference between these solutions. Plate [ -2(a) shows that result of the 4-th RK
method with hundreds stepsizes in single precision for the initial value (5,5,10) and r = 28. As
shown, the isolines of numerical solutions are parallel and straight in the beginning, indicating
that the solutions for different stepsizes are very close to each other. However, the isolines in re-
gions of the bigger and smaller stepsizes appear waves after a short run, which implies that the
solutions for these stepsizes are not in accord with those for others, and the length of parallel iso-
line which is called the width of interval of effective stepsizes starts shortening. As integration
proceeds , the width of interval of effective stepsize (IES) is becoming smaller and smaller and fi-
nally becomes zero at the time of 17 or so. Beyond the time point the isolines become disordered
and unsystematic and the numerical solutions for all stepsizes are out of step, meaning that the
difference between solutions for different stepsizes is significant. That is to say, all numerical so-
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The computational uncertainty principle gives a certain limitation to the MECT of long-time nu-
merical integration for chaos system which is sensitive to initial values and for some systems with
transient chaos. This is just the root cause of the various phenomena observed in our numerical
experiments . This principle indicates that the computational capacity of numerical methods is very
limited for nonlinear ODEs under the inherent property of finite machine precision .

To reveal the intrinsic relationships between MECT, OS, the order of numerical method and
machine precision, it is necessary to design and efficient algorithm for ECTP. Here we give an
optimal searching algorithm to obtain ECTP. The optimal searching method is carried out by com-
paring the difference among numerical solutions obtained by a sequence of stepsizes. In the initial
interval of stepsize [ hmins Pmax] ( Amin should be sufficiently small, here A, = 10”7, but
hoin = 0.3 %1077 for the explicit Adams method of order 2 and the Talyor series-method of order

2), choose n stepsizes h;(i=1,""",n) (as well-distributed as possible and n should be larg-
er). Let n numerical solutions obtained by these n stepsizes be y,(n) at the integration time ¢.
If their difference V,(¢) (may be measured in standard deviation) is less than a given tolerance
0, they express well the value of exact solution at ¢, and so the interval of effective stepsize is
[ Amin> hmex) and its width is W, (¢) = lgh e — lgh . Otherwise, if V,(¢) is greater than &,
it indicates that numerical solutions obtained by certain stepsizes deviate from exact solution, and
so reject them from y,(n) such that the difference among the rest is less than §. Take the mini-
mum rejection numbers as the optimal principle. From this we have an interval of effective step-
size at t. Go on integrating with the stepsizes in the interval of effective stepsize and repeat con-
tinually the above processes until there leave only two adjacent stepsizes h;(¢;) and h;,(¢,).
Then choose m stepsizes in the interval [hj( t), hj+1( £)] again and use them to compute and
to compare anew, until finally there is no difference between two adjacent stepsizes remaining be-
low 0. At this time we get ECTP, MECT and OS. For the purpose of comparing different prob-
lems, the tolerance & should be measured in the relative index. Let the oscillation of exact solu-
tion from the initial time ¢4 to the time ¢ be V(¢). Then the tolerance & requires V,()/V(t)
< . Exact solution is generally unknown, so in practice we use the oscillation V* () of nu-
merical solutions obtained by stepsize in the interval of effective stepsize from ¢, to ¢ instead of
V(t). In our experiments the tolerance & is 1/10. Plate I -2(c) plots the ECTPs of Plate I -
2(a), (b) from this optimal searching algorithm. Obviously, ECTP can be obtained accurately .

Using the optimal searching algorithm we have carried out many experiments on 116, 160
initial values with the 4th order RK method. Fig. 9(a) and (b) show the distribution of MECT
on one section in single precision and in double precision, respectively. These experiments indi-
cate that different initial values have different MECT, and that for the same initial value the
MECT in double precision is longer than that in single precision. On average, MECT in single
precision and in double precision are 16.857 and 35.412, respectively. Evidently reducing
round-error can efficiently increase MECT. Comparing fig. 9(a) with fig. 9(b), we easily find
* that in pattern they are very similar to each other, and that the difference between MECT in dou-
ble precision and in single precision seems to approximate a certain fixed number (between 18
and 19 in this case) . Therefore, although MECT under one machine precision is dependent on
the initial value, the difference in MECT between two machine precision may be independent of
the initial value. In fact, the results will be verified by our theoretical analyses in part II of this

paper.
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Comparing Plate ] -1 with Plate | -3, we can find that for each WBIV in Plate I -1 (with-
out chaos) its MECT is relatively long in Plate | -3 (with chaos). For the cases with chaos the
Lebesgue measure of WBIVs is zero, i.e. the MECTs of almost all initial values are finite under
the finite machine precision.

Based on the comparison between mean MECT and mean OS of ten initial values of the
Lorenz equations for r = 28 under different precisions and different orders (fig. 9), the relation-
ships between MECT, OS, order of numerical method and machine precision are as follows: (i)
MECT and OS increase as the order of method increases, but their increments gradually decrease
(fig. 9(a)—(c)). Additionally, the MECT and the OS of RK, Taylor series and implicit
Adams methods are a little bigger than those of explicit Adams methods with the same order; (ii)
in double precision MECT is two times longer than that in single precision (fig. 9(a), (b)), but
OS is much smaller than that in single precision (fig. 9(c)). It follows that MECT can be remark-
ably enhanced by an increase in machine precision, but the corresponding OS is reduced distinctly .

(c)
._._,.._r"' e ~u
b~ _,D~’D
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L L 1 1 %%
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1 1 1 1 1 L 1 1 1 1 1 1 1 1
6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Order p

Fig. 9. MECT and OS versus the orders of numerical methods. (a) The mean MECT of ten initial
values in single precision for the Lorenz equations when r = 28. The ten initial values are (0,1,0),
(5,5,10), (-13,4,28), ( -15,5,20), (10, -8, -20), ( -20, - 15,11), ( - 6,8,13),
(11,10,15), (2,-3,16) and ( -6, -7, - 8), respectively. Solid circles, squares, triangles and
diamonds denote RK, Taylor series, explicit Adams and implicit Adams methods, respectively; (b)

as in (&), except using double precision and open symbols; (c) as in (a) and (b), but for the mean

0S H.

The above analyses show that under different machine precisions MECTs or OSs of numerical
methods with the same order are different. However, are there any certain relations between two
OSs or between two MECTs for the same order methods under two machine precision? To answer
this question, the following index for characterizing the relationship between OSs under double

machine precision is defined as

H,
R (4)

where H, and H, are two OSs of the same numerical method of order p in double given machine

! =

precision Y1 =5x10"", ¥, =5x 10" "2 with n; and n, significant digits respectively. For con-
venience, let n, < n, in the following (in this paper n, =7, n, =16). Fig. 10(a) shows the
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Fig. 10. Ratio / of OS in single precision to OS in precision double versus grder of method.

(a) Asin fig. 9(a), but for the mean [. Stars are theoretical from formula (5), and the rest

of the symbols are as in fig. 9(b); (b) as in (a) except for (logyl) ™.
values [ from ten initial values in fig. 9 versus the orders. As indicated in the graph, the [ val-
ues of four classes of numerical methods agree well with each other. This suggests that the ratio of
0Ss under double machine precision is independent of the numerical method although OS depends
on numerical method, i.e. the values [ for different methods obey the same law. For different
initial values, the law of / remains unchanged. Moreover, the law of [ is still the same for differ-
ent equations'’ (for example, y' =y, y(0) =1 and y' = — y, y(0) =1, etc). Thus, the ratio
| satisfies universal relation under double machine precision (The conclusion will be proved theo-
retically in part II of this paper), and ! depends only on the order p of method and the machine
precision, namely I = [(p,n,,n,). By fig. 10(a), the relation between log;y! and p is analo-
gous to the inverse ratio relation. If it is so, its reciprocal is certainly a linear function of p. Just
as we expected, this conclusion is verified clearly in fig. 10(b). The coefficients of the linear
relation can be determined by the least square method. The results are shown in the column of re-
lation 1 in table 2. From the right side of the statistic relations 1, it is easy to see that their de-
nominators are close t0 9. And An = n, — n; =9 in this paper. This is not any accidental coinci-

dence. The theoretical analysis in part I of this paper will prove the relation as follows:
_An_
I = 107+95, (5)

In the case of this paper (An =9) this relation is confirmed by the statistic relation 2 in table 2.
Fig. 10(a) shows that the theoretical [ values from formula (5) are in close accordance with the
experimental values. Hence, OS under any machine precision can be determined in the light of
this formula provided that OS at certain machine precision is known.

Table 2  Statistic relations between the experimental [ values and p

Methods Statistic relation 1 Statistic relation 2
RK (logyl) ™" = 0.1124947p + 0.0561754 = & +0.4993607 (logio 1) ™" L () 40.5553867)
0f =0. +0. = o =—(p+0.
B0 P 8.8893108 Bio 9P
Tayl i (logyo!) "' =0.1120418p + 0.0611100 p+0.3434214 (logol) " = —=(p +0.6002492)
aylor series 0} =V. + . = (o} = + -
y 810 P 8.9252377 Blo 9 P
Explicit Ad (logy )~ = 0. 1162587p + 00452832 = P+ 0- 3895037 (logol) " = - ( p +0.5928620)
XplCY ams = . + N = 0 =70 -
F o8 P 8.6015072 Bo 9 F
Implicit Ad (logp!) ~' =0.1107671p + 0.0669475 p+0.6043992 (log,ol) ! L (p +0.5901417)
mplicl ams 0 = . + . = T emememm—— 0 =/ + .
p 810 p 9.0279551 810 9 p

1) Same footnote 1) on page 452.
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For MECT, we define the following index:

AT = T, - T, (6)
where T, T, are the MECTs of the same numerical method of order p under two given machine
precisions with n; and n,(n, < n,) significant digits respectively. Fig. 11(a) shows AT from
the results in figs. 9(a) and (b) versus order, in which, the values AT of four classes of meth-
ods are also in good agreement with each other, and the difference AT between double precision
and single precision tends to a fixed value with the increase in order. Is there also a universal law
for AT? Is it linked certainly to [? These questions are answered in fig. 11(b). As shown in

fig. 11(b), there is a good relation between eAT and 7, i.e. there is the following formula:

AT = plnl. (7)
10°
PO S (b)
,--;‘_.,.a"‘
>
6 78910
14

Fig. 11. (a) The difference AT between MECTs in double precision and in single precision

versus order of method . Stars are from formula (7), and all other symbols are same as in fig. 9

(a); (b) relationship between e” and #. The symbols are as in (a) and represent e . The

solid, dot-dashed, short dashed and long dashed lines denote [ where [ are from RK, Taylor

series, explicit and implicit Adams methods in fig. 10(a), respectively.
From fig. 11(a), the AT values from this relation also accord with the experimental values.
Therefore, MECT at any machine precision can be determined by use of this relation on condition
that MECT at some machine precision is known. As p—=~® , AT—>AnInl0. In two precisions in
this paper, one has AT—>9In10~20.7233 (p—* ® ),

4 Conclusions

Although round-off error is very small, its effect on the long-time numerical integration for
nonlinear ODEs cannot be neglected. Based on a great number of numerical experiments, we find
that in the case without chaos numerical solution has a strong dependence on machine precision
which essentially differs from sensitive dependence on initial conditions, and that in the case with
chaos there exist MECT and OS under a finite machine precision. The solution of ODEs cannot be
accurately calculated beyond MECT. Moreover, an optimal seraching method which can evaluate
MECT and OS well under a finite machine precision is presented. By use of this method, the es-
sential relationships between MECT, OS, the order of numerical method and machine precision
are found. Besides, we have found two universal relations which reveal the intrinsic relationships
between two OSs and between two MECTs under any two machine precisions. According to the
two relations, OS and MECT can be determined provided that OS and MECT under a certain ma-
chine precision are known. There is MECT in a numerical method under a finite machine preci-
sion because on the one hand, there is an upper bound limitation for the magnitude of stepsize
due to the stability condition of difference method, on the other hand, there must be another limi-
tation of upper bound for the number of integration steps because of the limitations of finite accu-



460 SCIENCE IN CHINA (Series E) Vol. 43

racy due to computing on actual machines. The two aspects are contradictory to each other, with
the results that they are complementary to each other, leading to the computational uncertainty
principle. Because of space limitation the numerical experiments are carried out only for the
Lorenz equations in this paper. In fact, we have other ODEs' (including linear equations) .
Based on the theoretical analysis in part IT of this paper, the results here are still useful for partial
differential equations, though they involve the match between space stepsize and time stepsize.
Thus far in our findings, in order to reduce the influence of round-off error, the machine preci-
sion must be constantly improved. The machine precision, however, will not be infinite. There-
fore the computational uncertainty principle presents a great challenge not only to the effectiveness
and reliability of long-time numerical integration for nonlinear ODEs, but also to how to change
the current calculation fashions to generalize efficiently the MECT of numerical methods :
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